Skip to contents

What a color! What a viz!

visualizeR proposes some utils to get REACH and AGORA colors, ready-to-go color palettes, and a few visualization functions (horizontal hist graph for instance).

Installation

You can install the last version of visualizeR from GitHub with:

# install.packages("devtools")
devtools::install_github("gnoblet/visualizeR", build_vignettes = TRUE)

Roadmap

Roadmap is as follows:

  • [X] Add IMPACT’s colors
  • [X] Add all color palettes from the internal documentation
  • [ ] There remains to be added more-than-7-color palettes and black color palettes
  • [X] Add new types of visualization (e.g. dumbbell plot, lollipop plot, etc.)
  • [X] Use examples
  • [ ] Add some ease-map functions
  • [ ] Add some interactive functions (maps and graphs)
  • [ ] Consolidate and make errors transparent

Request

Please, do not hesitate to pull request any new viz or colors or color palettes, or to email request any change ( or ).

Colors

Color palettes for REACH, AGORA and IMPACT are available. Functions to access colors and palettes are cols_initiative() or pal_initiative(). For now, the initiative with the most colors and color palettes is REACH. Feel free to pull requests new AGORA and IMPACT colors.

library(visualizeR)

# Get all saved REACH colors, named
cols_reach(unnamed = F)[1:10]
#>        white        black    main_grey     main_red main_lt_grey   main_beige 
#>    "#FFFFFF"    "#000000"    "#58585A"    "#EE5859"    "#C7C8CA"    "#D2CBB8" 
#>     iroise_1     iroise_2     iroise_3     iroise_4 
#>    "#DFECEF"    "#B1D7E0"    "#699DA3"    "#236A7A"

# Extract a color palette as hexadecimal codes and reversed
pal_reach(palette = "main", reversed = TRUE, color_ramp_palette = FALSE)
#> [1] "#58585A" "#EE5859" "#C7C8CA" "#D2CBB8"

# Get all color palettes names
pal_reach(show_palettes = T)
#>  [1] "main"            "primary"         "secondary"       "two_dots"       
#>  [5] "two_dots_flashy" "red_main"        "red_main_5"      "red_alt"        
#>  [9] "red_alt_5"       "iroise"          "iroise_5"        "discrete_6"     
#> [13] "red_2"           "red_3"           "red_4"           "red_5"          
#> [17] "red_6"           "red_7"           "green_2"         "green_3"        
#> [21] "green_4"         "green_5"         "green_6"         "green_7"        
#> [25] "artichoke_2"     "artichoke_3"     "artichoke_4"     "artichoke_5"    
#> [29] "artichoke_6"     "artichoke_7"     "blue_2"          "blue_3"         
#> [33] "blue_4"          "blue_5"          "blue_6"          "blue_7"

Charts

Example 1: Bar chart, already REACH themed

library(visualizeR)
library(palmerpenguins)
library(dplyr)

df <- penguins |> 
  group_by(island, species) |> 
  summarize(
    mean_bl = mean(bill_length_mm, na.rm = T),
    mean_fl = mean(flipper_length_mm, na.rm = T)) |> 
  ungroup()

# Simple bar chart by group with some alpha transparency
bar(df, island, mean_bl, species, percent = FALSE, alpha = 0.6, x_title = "Mean of bill length")


# Using another color palette through `theme_reach()` and changing scale to percent
bar(df, island,mean_bl, species, percent = TRUE, theme = theme_reach(palette = "artichoke_3"))


# Not flipped, with text added, group_title, no y-axis and no bold for legend
bar(df, island, mean_bl, species, group_title = "Species", flip = FALSE, add_text = TRUE, add_text_suffix = "%", percent = FALSE, theme = theme_reach(text_font_face = "plain", axis_y = FALSE))

Example 2: Point chart, already REACH themed

At this stage, point_reach() only supports categorical grouping colors with the group arg.


# Simple point chart
point(penguins, bill_length_mm, flipper_length_mm)


# Point chart with grouping colors, greater dot size, some transparency, reversed color palette
point(penguins, bill_length_mm, flipper_length_mm, island, alpha = 0.6, size = 3, theme = theme_reach(reverse = TRUE))


# Using another color palettes
point(penguins, bill_length_mm, flipper_length_mm, island, size = 1.5, x_title = "Bill", y_title = "Flipper", title = "Length (mm)", theme = theme_reach(palette = "artichoke_3", text_font_face = , grid_major_x = TRUE,  title_position_to_plot = FALSE))

Example 3: Dumbbell plot, REACH themed

Remember to ensure that your data are in the long format and you only have two groups on the x-axis; for instance, IDP and returnee and no NA values.

# Prepare long data
df <- tibble::tibble(
  admin1 = rep(letters[1:8], 2),
  setting = c(rep(c("Rural", "Urban"), 4), rep(c("Urban", "Rural"), 4)),
  stat = rnorm(16, mean = 50, sd = 18)
) |>
  dplyr::mutate(stat = round(stat, 0))

# Example, adding a parameter to `theme_reach()` passed on `ggplot2::theme()` to align legend title

dumbbell(df,
         stat,
         setting,
         admin1,
         title = "% of HHs that reported open defecation as sanitation facility",
         group_y_title = "Admin 1",
         group_x_title = "Setting",
         theme = theme_reach(legend_position =  "bottom",
                             legend_direction = "horizontal",
                             legend_title_font_face = "bold",
                             palette = "primary",
                             title_position_to_plot = FALSE,
                             legend.title.align = 0.5)) +
  # Change legend title position (could be included as part of the function)
  ggplot2::guides(  
    color = ggplot2::guide_legend(title.position = "left"),
    fill =  ggplot2::guide_legend(title.position = "left")
  )

Example 4: donut chart, REACH themed (to used once, not twice)


# Some summarized data: % of HHs by displacement status
df <- tibble::tibble(
  status = c("Displaced", "Non displaced", "Returnee", "Don't know/Prefer not to say"),
  percentage = c(18, 65, 12, 3)
)

# Donut
donut(df, 
      status, 
      percentage, 
      hole_size  = 3, 
      add_text_suffix = "%", 
      add_text_color = cols_reach("dk_grey"), 
      add_text_treshold_display = 5,
      x_title = "Displacement status", 
      title = "% of HHs by displacement status", 
      theme = theme_reach(legend_reverse = TRUE))

Example 5: waffle chart

#
waffle(df, status, percentage, x_title = "A caption", title = "A title", subtitle = "A subtitle")

Example 6: alluvial chart, REACH themed


# Some summarized data: % of HHs by self-reported status of displacement in 2021 and in 2022
df <- tibble::tibble(
  status_from = c(rep("Displaced", 4),
                  rep("Non displaced", 4),
                  rep("Returnee", 4),
                  rep("Dnk/Pnts", 4)),
  status_to = c("Displaced", "Non displaced", "Returnee", "Dnk/Pnts", "Displaced", "Non displaced", "Returnee", "Dnk/Pnts", "Displaced", "Non displaced", "Returnee", "Dnk/Pnts", "Displaced", "Non displaced", "Returnee", "Dnk/Pnts"),
  percentage = c(20, 8, 18, 1, 12, 21, 0, 2, 0, 3, 12, 1, 0, 0, 1, 1)
)

# Alluvial, here the group is the status for 2021

alluvial(df, 
         status_from, 
         status_to,
         percentage, 
         status_from,
         from_levels = c("Displaced", "Non displaced", "Returnee", "Dnk/Pnts"), 
         alpha = 0.8, 
         group_title = "Status for 2021",
         title = "% of HHs by self-reported status from 2021 to 2022", 
         theme = theme_reach(
           axis_y = FALSE, 
           legend_position = "none"))

Example 7: lollipop chart

library(tidyr)
# Prepare long data
df <- tibble::tibble(
 admin1 = replicate(15, sample(letters, 8)) |> t() |> as.data.frame() |> unite("admin1", sep = "") |> dplyr::pull(admin1),  
 stat = rnorm(15, mean = 50, sd = 15)) |>
  dplyr::mutate(stat = round(stat, 0))

# Make lollipop plot, REACH themed, vertical with 45 degrees angle X-labels
lollipop(df,
         admin1,
         stat,
         arrange = FALSE,
         add_text = FALSE,
         flip = FALSE,
         y_title = "% of HHs",
         x_title = "Admin 1",
         title = "% of HHs that reported having received a humanitarian assistance",
         theme = theme_reach(axis_text_x_angle = 45, 
                             grid_major_y = TRUE, 
                             grid_major_y_size = 0.2, 
                             grid_major_x = TRUE, 
                             grid_minor_y = TRUE))


# Horizontal, greater point size, arranged by value, no grid, and text labels added
lollipop(df,
         admin1,
         stat,
         arrange = TRUE,
         point_size = 10,
         point_color = cols_reach("main_beige"),
         segment_size = 2,
         add_text = TRUE,
         add_text_suffix = "%",
         y_title = "% of HHs",
         x_title = "Admin 1",
         title = "% of HHs that reported having received a humanitarian assistance in the 12 months prior to the assessment",
         theme = theme_reach(title_position_to_plot = FALSE))

Maps


# Add indicator layer 
# - based on "pretty" classes and title "Proportion (%)" 
# - buffer to add a 10% around the bounding box
map <- add_indicator_layer(
  indicator_admin1, 
  opn_dfc,
  buffer = 0.1) + 
  # Layout - some defaults - add the map title
  add_layout("% of HH that reported open defecation as sanitation facility") + 
  # Admin boundaries as list of shape files (lines) and colors, line widths and labels as vectors
  add_admin_boundaries(
    lines = list(line_admin1, border_admin0, frontier_admin0),
    colors = cols_reach("main_lt_grey", "dk_grey", "black"),
    lwds = c(0.5, 2, 3),
    labels = c("Department", "Country", "Dominican Rep. frontier"),
    title = "Administrative boundaries") + 
  # Add text labels - centered on admin 1 centroids
  add_admin_labels(centroid_admin1, ADM1_FR_UPPER) +
  # Add a compass
  add_compass() +
  # Add a scale bar
  add_scale_bar() +
  # Add credits
  add_credits("Admin. boundaries. : CNIGS \nCoord. system: GCS WGS 1984")
Once exported with tmap::tmap_save().

Once exported with tmap::tmap_save().